Stance Classification with Target-Specific Neural Attention Networks
نویسندگان
چکیده
Stance classification, which aims at detecting the stance expressed in text towards a specific target, is an emerging problem in sentiment analysis. A major difference between stance classification and traditional aspect-level sentiment classification is that the identification of stance is dependent on target which might not be explicitly mentioned in text. This indicates that apart from text content, the target information is important to stance detection. To this end, we propose a neural network-based model, which incorporates target-specific information into stance classification by following a novel attention mechanism. In specific, the attention mechanism is expected to locate the critical parts of text which are related to target. Our evaluations on both the English and Chinese Stance Detection datasets show that the proposed model achieves the state-of-theart performance.
منابع مشابه
Effect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملStance Detection in Chinese MicroBlogs with Neural Networks
In this paper, we presents a stance detection system for NLPCC-ICCPOL 2016 share task 4. Our Stance Detection System can determinate whether the author of Weibo text is in favor of the given target, against the given target, or neither. We exploit LSTMs model and the average F score of our system is 56.56%. In contrast to the traditional target/aspect sentiment, the given target may not be pres...
متن کاملA Dataset for Multi-Target Stance Detection
Current models for stance classification often treat each target independently, but in many applications, there exist natural dependencies among targets, e.g., stance towards two or more politicians in an election or towards several brands of the same product. In this paper, we focus on the problem of multi-target stance detection. We present a new dataset that we built for this task. Furthermo...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کامل